Kinematic Relationships
Equations of Motion
Equations of Motion
As part of the Higher course, several Equations of Motion were considered. These formulae allowed the calculation of a range of variables relating to the motion of an object in Classical Mechanics. A deeper understanding of these formulae is required for the Advanced Higher course including where they came from...
As part of the Higher course, several Equations of Motion were considered. These formulae allowed the calculation of a range of variables relating to the motion of an object in Classical Mechanics. A deeper understanding of these formulae is required for the Advanced Higher course including where they came from...
v = u + at
v = u + at
s = ut +1/2at2
s = ut +1/2at2
v2 = u2 + 2as
v2 = u2 + 2as
s = 1/2 ( u + v ) t
s = 1/2 ( u + v ) t
Each of the equations above has been derived from the same basic root - the Velocity, Displacement, Time formula :-
Each of the equations above has been derived from the same basic root - the Velocity, Displacement, Time formula :-
v = s/t
v = s/t
Non Examinable Derivation - Displacement, Velocity and Acceleration
Non Examinable Derivation - Displacement, Velocity and Acceleration
The above diagram shows the motion of an object travelling from Point O towards Point X.
The above diagram shows the motion of an object travelling from Point O towards Point X.
The Object moves from O to P giving a displacement of 's' in time t
The Object moves from O to P giving a displacement of 's' in time t
The Object moves from P to Q giving a displacement of 'Δs' in time Δt
The Object moves from P to Q giving a displacement of 'Δs' in time Δt
Note - the Delta ( Δ ) symbol in the above diagram refers mathematically to the change in s or t.
Note - the Delta ( Δ ) symbol in the above diagram refers mathematically to the change in s or t.
The Average Velocity of the Object between points P and Q is therefore :-
The Average Velocity of the Object between points P and Q is therefore :-
Vav = Δs / Δt
Vav = Δs / Δt
The Instantaneous Velocity, however, is found using the following Calculus expression, where the value of Δt tends towards zero :-
The Instantaneous Velocity, however, is found using the following Calculus expression, where the value of Δt tends towards zero :-
This shows that by Calculus, Velocity can be found as the first differential of Displacement.
This shows that by Calculus, Velocity can be found as the first differential of Displacement.
The Average Acceleration can be found through a similar method with a change in average Velocity (Δv) over a change in time (Δt) :-
The Average Acceleration can be found through a similar method with a change in average Velocity (Δv) over a change in time (Δt) :-
aav = Δv / Δt
aav = Δv / Δt
The Instantaneous Acceleration, however, is found using the following Calculus expression, where the value of Δt tends towards zero :-
The Instantaneous Acceleration, however, is found using the following Calculus expression, where the value of Δt tends towards zero :-
This shows that by Calculus, Acceleration can be found as the first differential of Velocity. This also means that Acceleration can be found as the Second Differential of Displacement :-
This shows that by Calculus, Acceleration can be found as the first differential of Velocity. This also means that Acceleration can be found as the Second Differential of Displacement :-
Examinable Derivation - v = u + at
Examinable Derivation - v = u + at
Integration of Acceleration with respect to time :-
Integration of Acceleration with respect to time :-
Examinable Derivation - s = ut + 1/2at2
Examinable Derivation - s = ut + 1/2at2
Integration of Velocity with respect to time :-
Integration of Velocity with respect to time :-
Non Examinable Derivation - v2 = u2 +2as
Non Examinable Derivation - v2 = u2 +2as
Square both sides of EoM 1, then substitute in EoM 2 :-
Square both sides of EoM 1, then substitute in EoM 2 :-
Example 1 -
Example 1 -
The displacement of an object over time can be described by the following equation :-
The displacement of an object over time can be described by the following equation :-
s(t) = 3.1t2 + 4.1t + 6
s(t) = 3.1t2 + 4.1t + 6
Calculate :-
Calculate :-
The Velocity of the Object after 7 seconds
The Velocity of the Object after 7 seconds
The Acceleration of the Object
The Acceleration of the Object
Velocity after 7 Seconds :-
Velocity after 7 Seconds :-
Acceleration of the Object :-
Acceleration of the Object :-